Apply Now Enquire Our Events WhatsApp

Optimization of Heliostat Fields Using Advanced Particle Swarm Optimization (APSO)

2021 IEEE 4th International Conference on Renewable Energy and Power Engineering (REPE), Campus Innovation Hub

Optical losses account for 40% of all the losses in a central receiver system. These optical losses occur due to factors like shading, blocking, atmospheric attenuation, spillage, cosine loss, and mirror reflectivity. These factors are collectively represented using a single factor known as optical efficiency. There exists a tradeoff among these factors. The unavoidable optical loss can be minimized by optimizing the positions of heliostats in a strategic manner. An advanced particle swarm algorithm is used to optimize the position of heliostats around a dense radial staggered field. An efficiency map of the heliostat field is generated. Using instantaneous optical efficiency as an objective function, a single objective optimization is performed using 30 particles and 2 dimensions (each dimension representing an optimization variable). The results highlight the areas in the heliostat field with the highest losses associated with different components of optical efficiency and their solution. The instantaneous efficiency increases by 1.5% after optimization.

 

Arslan A. Rizvi, DongYang, T.A. Khan, (2021): “Optimization of Heliostat Fields Using Advanced Particle Swarm Optimization (APSO)”, 2021 IEEE REPE, October 2021, Beijing, China. (https://ieeexplore.ieee.org/document/9617015).

DOI: 10.1109/REPE52765.2021.9617015

Cooperations

BIU Bundesverband Interaktive Unterhaltungssoftware 3D INNOVATION CENTER 3D LABOR dpa.infografik award 2008 FABLAB.BERLIN Fraunhofer Stiftung Deutsches Technikmuseum Berlin DIGAREC

Contact us today